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SUMMARY 

The unsteady frictional flow of a compressible fluid generated in a long pipeline after an accidental rupture is 
ofconsiderable interest to the offshore gas industry. It answers several important questions concerning safety 
and pollution, e.g. the flow rate at the broken pipe end. 

Laboratory tests cannot simulate the rather complex phenomenon satisfactorily. The problem is highly 
non-linear and no general analytical solution is yet known. 

In this study, based on computational fluid dynamics, the simplifying assumptions of isothermal and low 
Mach number flow often applied in the case of unsteady compressible flows in pipelines, have not been used. 

Owing to the choking condition ( M a  = 1) which prevails for some time at the broken end, and the 
cumulative effect of friction over the 145 km long pipeline, we obtain (;p/?.~),+ - 7". This analytically 
established singularity leads to numerical difficulties which seriously affect the accuracy. For short tubes (such 
as shock tubes) this negative feature is much less severe. Special procedures were necessary to keep the 
accuracy within the chosen limit of I per cent. 

KEY WOKUS Flow Gas Numerical One-dimensional Pipeline Unsteady 

1. INTRODUCTION 

The amount of natural gas in a 145 km long offshore pipeline is about 7000 tons. This quantity is 
about one third of the crude lost during the famous BRAVO blowout in 1977 in the EKOFISK 
field in the North Sea. To obtain a more intuitive idea oFthis quantity we may think of it as a heat 
source delivering (after combustion) a heat power of 100 MW for 40 days (960 hours). 

Pollution and economic losses due to the spilling of fuel may therefore be equally high for a 
blowout in an offshore well as in a pipeline on the sea-bed. Various efforts have been made to 
control the former,'-2, but not much attention has yet been given to the latter. 

The mass-flow of gas escaping from a burst pipeline is several orders of magnitude larger than 
the mass-flow from a spilling well. The former case represents a much more severe hazard in several 
ways. I t  may for instance cause instability (due to a partial loss of buoyancy) of platforms or ships 
caught in the top of the resulting water-gas plume. 

The question arises how much the mass-flow released by a ruptured pipeline may amount to and 
how quickly i t  will diminish with time. From the fluid mechanics point of view this is a complicated 
problem, which is best dealt with by numerical integration procedures. An approximate analytical 
solution of the problem has been published by Fannelop and Ryhming3 

The present article is based on Reference 4 where details may be found, in particular concerning 
the corresponding Fortran program 'PIPE 1'. 

The major difficulty is due to the singularity (established in the Appendix) which results from the 
combined effects of friction and choking, occurring at the broken end. 
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Figure 1. Homentropic flow (no friction, entropy s(x, t) = const). Parameter: t = 0, 100,. . . ,400 s. u i  = 0, 4.f = 0 

Figure 2. Flow with friction and u < 0 at I = 0. Parameter: r = 0. 100,. . . ,400s. 11; = - 10 m/s. 4 //D = 0.00837/m 
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2. PHYSICS O F  THE PROBLEM 

Under normal steady-state conditions the flow will be assumed to be orientated from right (x = L) 
to left (x = 0) (Figures 1 and 2), i.e. in the opposite direction to the x-axis. Immediately after the 
rupture (assumed to occur at x = L), choking over the entire cross-section of the pipe* takes place 
there, while an expansion wave starts running from x = L to the left, i.e. in the same direction as the 
still undisturbed stationary flow. The strong expansion produces a reversal of the flow so that there 
is an outflow at both ends of the pipeline. 

If the flow were frictionless, the pressure distribution p ( x )  at different times t would look as shown 
in Figure 1. Friction being taken into account, two facts lead to a totally different distribution 
(Figure 2): 

(a) As a result of frictional losses the pressure gradient (ap/dx), is positive in the flow region on 

(b) Owing to the strong expansion taking place on the right-hand side (o'pldx), is negative. 

Hence a pressure peak will appear somewhere between x=O and x = L .  Its location xpmax 
corresponds approximately to the location of flow reversal, where the velocity is zero. With 
increasing time, the pressure peak will slowly move towards the left until it reaches x = 0. Except 
for these features, which have already been described in Reference 3, little seems to be known from 
the theoretical point of view. The main reason for this is that the problem is highly non-linear.. 
making the finding of analytical solutions unlikely.+ 

Compared with References 3, 5,6  (except for the last chapter) and 7 ,  the physical model used in 
our study presents a basic difference: in References 3 and 5-7 the assumption of isothermal flow is 
made, which means that no energy equation needs to be considered. This simplifying assumption is 
no longer valid if important changes in the thermodynamic states of the particles occur over short 
distances (as in our case near the broken end of the pipeline). In the present study only the initial 
conditions (described in sections 5 and 7) are those of isothermal flow, whereas the unsteady flow 
generated after the rupture of the pipeline is considered as adiabatic. 

Both assumptions (isothermal initial condition and adiabatic flow for r > 0) are extremely 
idealized, reality being somewhere in between. This heuristic choice is justified as follows: 

1. Before rupture the flow is slow (u E 10 to 25 m/s) and the time-span AtL( z 2.5 h) a particle 
takes to move along the whole pipeline is long. The isothermal flow distribution for the initial 
condition (t = 0s) therefore appears very plausible. 

2. The sudden introduction (at t = 0) of the adiabatic flow hypothesis has almost no effect on the 
left part of the pipeline (situated between x = 0 and the location of the wave front). This 
assertion is confirmed by Figure 2 (and Figures 9-1 1). This feature can also be shown with a 
thermodynamic argument. Consider a steady, adiabatic pipe flow of a perfect gas with low 
velocities (or more correctly, low Mach numbers). If we drew the static-state line (the so-called 
'Fanno-line') in Mollier's enthalpy-entropy diagram, we would see that it is almost identical 
to an isothermal line (itself identical to a constant enthalpy line). 

3. It can be shown' that for a stationary isothermal choking condition the limiting gas velocity 

the left-hand side, which the expansion wave has not yet reached. 

*In  various studies (e.g. Reference 5) mainly concerned with the control of unsteady flows in piping systems, their authors 
consider that the choked flow occurs in the open portion of a partially closed outlet valve located at Y = L. As the Mach 
number on the upstream side of the valve is low the same authors consider an cdiahrrtic acceleration through the valve. This 
is a totally different flow situation from ours. 

'Readers with an inclination towards analytical methodsshould be made aware of the treatise' by H. Pascal, essentially 
devoted to unsteady gas flow in pipelines. However, the cases which are dealt with in this book are mainly restricted to 
quasi-steady, isothermal and low subsonic flow situations. 
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is J(RT),  but infinite heat transfer coefficients would be necessary. Shapiro (Reference 8, p. 
183) writes that ‘this limit is artificial and not physically real’. The hypothesis of adiabatic 
flow, especially near the broken end, where particles are accelerated relatively rapidly and (at 
least at the beginning) over a relatively short distance, seems closer to reality than the 
hypothesis of isothermal flow. For long time intervals the heat transferred into the pipeline 
should be accounted for, but this would considerably complicate the analysis. 

It appears that.laboratory tests of the class of problems investigated here cannot be performed, in 
view of the enormous length-to-diameter ratio LID of the pipeline (order of magnitude lo5). 

3. MATHEMATICAL ASPECTS 

One of the non-linear terms is thepiction term which appears in the suitably non-dimensionalized 
momentum equation as proportional to thepictionfactor .f and to the very high length-to-diameter 
ratio LID mentioned above.* For our application we shall use the value ,f LID z 300 (see section 5). 

Looking for an approximate analytical solution, Fannelop and Ryhming3 were obliged to define 
three phases, each one being subjected to different simplifications and corresponding solutions: an 
early-time regime (lasting about 25 s and stretching over some 10 km, counted from the breaking 
point), an intermediate-time regime (lasting until the pressure peak reaches the low-pressure side) 
and a late-time regime(of a quasi-steady nature). Fannelop and Ryhming3 devoted the main part of 
their investigation to the late-time regime, commenting that the other two regimes are better dealt 
with by numerical methods. 

One advantage of the numerical approach is that is treats the whole time range with the same set 
ofequutions, in which no term is neglected. Furthermore, numerical methods are not limited to very 
simple thermodynamic models of the fluid, such as the perfect gas, but can be extended to real 
gases.’. O 

4. USE O F  THE METHOD O F  CHARACTERISTICS 

The study presented here is based on the method of characteristics.8.’ - l 5  This method has mainly 
been applied with success to fluid mechanics problems without friction, or at least with only 
moderate frictional effects, i.e. with relatively low values of the parameter , fL /D.  Cases with 
important frictional effects have to be carefully checked regarding the accuracy of the results (see 
section 9). They require many more grid points than cases without friction. 

The well-established method of characteristics can be applied in various ways. Considering that 
the flow remains shock-free, we have chosen the ‘inverse marching procedure’ (also called ‘mesh- 
type procedure’ or ‘method of specified time intervals’), using as basic dependent variables p ,  p 
and u. 

To achieve high accuracy, an interpolation scheme with second-order polynomials had to be 
introduced, together with the assumption of correspondingly curved characteristic lines (Figure 3). 
For this reason the overall calculation method is comparable to a second-order finite difference 
method. More details concerning this calculation procedure can be found in Reference 16. 

The case without friction (Figure 1 )  is well known from the theoretical point of view (see, ror 
instance, chapter 111 of Reference 13). Use of the Riemann variables leads to a very simple and 
elegant analytical solution. 

* In  Reference 7 it is shown that for a certain class of unsteady low subsonic gas flow problems (‘packing’ and ‘drafting’), 
f L / D  is a parameter of primary importance. The calculated results presented in Reference 7 are based on the value f L / D  
= 250. 
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Figure 3. Elementary mesh of the wave diagram t ( r ) ,  showing the three c u r d  characteristic lines 

As already mentioned in the Introduction, the case with frictional flow (Figure 2), presents a 
totally different aspect, especially as far as the region near the breaking point (x = L)  is concerned. 
There the pressure, density and velocity distributions (for a given time t )  have infinite values of their 
partial x drriiwtiues. (An analytical proof of this assertion is given in the Appendix.) This is a 
major computational difficulty. In order to cope with the latter a special procedure based on a 
modified flow condition for the last Ax-mesh (described in section 9) has considerably improved the 
accuracy and convergence of the calculation. 

It should be noted that only the case where the breaking occurs on the high-pressure end of the 
pipeline has so far been investigated, as being the most significant from the safety point of view. 

5. HYPOTHESIS AND BASIC NUMERICAL INPUT 

The following set of data corresponds to a real case in the North Sea. 
The pipeline is straight, has a length L = 145 km and a diameter D = 0.87 m. 
The gas is considered as perfect, i.e. p = pRT,  with R = 518.3 m2/(s2K) and K = cp/cv = 1.33. 

Starting from an isothermal initial flow distribution (discussed in section 2) with 

T(x) = 281 K, (0 d x d L), 

the flow is considered adiabatic and one-dimensional (see section 2). The remaining initial 
conditions (at x = L'; see also section 7) are 

ui = - lO(m/s) 
pi = 133 bar. 

The exterior pressure will be taken as 

pa = 6 bar, 

corresponding to a sea depth of - 50m. 

value, is given by the initial condition: 
The lowest Reynolds number Re = puD/p, corresponding approximately to the lowest (pu)-  

For Re > 7 x lo7 the friction factor ('Fanning factor') ,f = t , /(pu2/2) (where T ,  is the wall shear 
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stress) can be considered independent of Re. Making this simplifying assumption, we consider 

f = constant = 0.0018205, 

which gives a pressure drop of 78 bar for the steady flow before breaking (see section 7). 
This constant value of f will be used throughout the unsteady flow analysis. 

6: CHARACTERISTIC AND COMPATIBILITY EQUATIONS 

Starting from the three conservation laws (continuity, momentum and energy equations given in 
the Appendix), and following a classical procedure (of which a comprehensive treatment is given in 
Reference 1 S), we establish the following relations: 

(a) Slopes of characteristics 

d - t  1 - dot - 1  d + t  1 
- - - and _ _ ~ ~ _ _  

dox u' d + x  u + u  d - x  u - a  

(The significance of (. . .)o, (. . .)+ and (. . .)- is explained in the Nomenclature list). 
(b) Compatibility equations: 

- ( K  - l)ufidot, (4) doP - a2doP - 

d+P  + p a d + u = [ a  - ( K -  l)u]/?d+a (5) 

d-P (6) 

- 

- pad-u= [ - a - ( K  - l)u]fid-t, 

where 

a = J(KRT) = speed of sound, (7) 

a = - yw = friction coefficient. 
D 2  

The numerical resolution of this set of equations consists of replacing the differentials by finite 
differences and the finite quantities (such as p, a, u, /?) by well-defined 'average values'. 

The emphasis of this article is on describing the physics of the problem and the results obtained. 
For more details on the computational aspects of the solution procedure the reader is referred to 
Reference 4. 

7. INITIAL CONDITIONS 

For 0 6 .Y 6 L' (Figure 4) we shall assume a steady isothernuzl pow from right to left. The 
combination of the continuity and momentum equations (see section 6.4 of Reference 8 for 
example) gives (neglecting the term In(Ma/Mai)2) 

Introducing the data from section 5 we obtain pX="=  55 bar (point 0 of Figure 4). 

In  our simplified physical model the sudden rupture at the high-pressure end occutring at t = 0s 
will be accompanied by an instantaneous drop in static pressure from pi = 133 bar to a much lower 
pressure p,=,,(point 0 of Figure 4) corresponding to choked flow  MU,=,^ = 1 for t > 0s). 

1 = 0 

I - 1 1  
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Figure 4. Initial slate p ( x )  and i((x): T ( x )  = constant = T, 

1 - -__ I 

The initial values P ,=~(X) ,  P ,=~(X) ,  a,=o(x) and U , = ~ ( X )  for L' d x d L, (whereby the arbitrary 
value L - L! may cover one or more Ax-meshes) will be evaluated as follows: we assume that 
between L and L! (Figure 4) we have a homogeneous frictionless flow field with a velocity 
ui( = - lOm/s, see section 5). Let At*( > 0) be the time an expansion wave would take to travel 
from x = L to x = L!. If such an expansion wave starts from x = L at t = - At*, we obtain a 
homentropic expansion flow, with a pressure and velocity distribution at t = 0 as shown in 
Figure 4 (points @ to a). Such flows are well known from the theoretical point of view.13.14 Their 
analysis, best conducted using the 'Riemann variables', leads to the following relations: 

where 
"* and t=-. x 

L 
a i =  J ( K R T J ,  t.=- 

' Llai 
These relations actually describe a self-similar motion, the similarity parameter being (1 - ()/ti (see 
p. 192 of Reference 13). 

Returning to the physical situation of the assumed sudden break at x = L, it appears that friction 
would play only a very minor role during the first few seconds. The above homentropic flow model 
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should therefore be a fairly good description of the starting process. The initial values for L‘ < x < L 
stated above will therefore be determined with the relations (10) to (13). 

The arbitrary choice of the initial flow distribution for L‘ < x < L actually has only a slight 
influence on the later calculation (say for t > 5 s), because we have an outflow. The flow particles 
initially located between L: and L are swept out of the pipeline after a very short time interval. 

8. BOUNDARY CONDITIONS 

For the subsonic outflow at the low-pressure end (x = 0) two basic options have been implemented: 

(a) prescription of the static pressure as a function of time 
(b) prescription of the velocity, which is reduced to zero in an arbitrary time span, thus 

A t  the high-pressure end (x = L) two distinct time sequences are considered. As long as the 
pressure P , = ~ ,  is higher than the external pressure in the water (pa = 6 bar), there will be choking of 
the flow, characterized by 

simulating the closing of a valve. 

Ma,=L(t) = 1. (14) 

We call this the ‘1st time sequence’. The condition (14) together with the compatibility equations 
(4) and (5) for the 0 and + characteristics form a non-linear set of three equations leading (after 
elimination of the unknowns p and p )  to a 3rd-order equation with the velocity u as the remaining 
unknown. 

The numerical results show that during the 1st time sequence described above, the pressure and 
density at x = Ldecrease (relatively slowly) with time. This is directly connected with the fact that 
the flow presentsjiction. (In the case of a homentropic, i.e. frictionless, flow ~ , = ~ ( r ) ,  p , = J f )  and 
u,=Jt) would remain constant.) 

When p x z L ( t )  reaches the exterior pressure pa (input value; see section 5), the choking condition 
no longer holds and is (automatically) replaced by the classical ‘equal pressure’ condition: 

(15) 

This condition characterizes our ‘2nd time sequence’. I t  leads to a subsonic outflow, similar to that 
already described under (a) (the velocity is of course orientated in the other direction). 

p,=,-(t) = pa( = constant). 

9. ACCURACY, CONVERGENCE AND STABILITY 

Checking the accuracy of a computed solution has basically two aspects: (a) the solution can be 
compared with experimental results, if such results are available; (b) various computational checks 
can be investigated. For the reasons explained at the end of section 2, no type (a) control could be 
done. 

A convenient and severe type (b) check is provided by the evaluation of an ‘accuracy criterion’ t:, 
which is now described. Its physical interpretation based on the law of ‘conservation of mass’ is 
basically the same as the one used in Reference 3: let M be the mass of gas contained in the entire 
pipeline at the time t. A t  some later time t + Ar, the mass in the pipeline will be M .  The loss of mass 
in the pipeline from t to t + At is therefore M -  M’ ( > 0) (Figure 5). 

I t  must be equal to the integrated mass flow having left the pipeline at both ends during At: 

A M =  - M,=,d.r, 
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Figure 5 .  Graphical interpretation of ,M - 11 

where fd = Apu and z = time (integration variable) 
The ‘accuracy criterion’ is defined as 

M-M’ 
AM 

&=- (ideal value = l),  

with AM and At corresponding to one time step in the calculation. We consider that the overdl 
calculation ‘converges’ if, as N (the number of grid points) increases, E tends towards I .  

The author would like to suggest a systematic use of this E for all unsteady one-dimensional flow 
calculations where this quantity makes sense. 

The basic numerical case defined in section 5, and calculated with N = 401, has given >;-values of 
less than 1.02, which corresponds to a relative ‘error’ ( E  - 1) of 2 per cent. 

Next we describe the ‘modified flow condition’ for the last Ax-mesh (or ‘reach’) mentioned in 
section 4. If we multiply by the empirical ‘convergence acceleration factor’ K ,  the friction terms of 
the compatibility equations (4) and (3, which, together with (14), govern the flow calculation of the 
last mesh, we obtain the results shown in Figure 6. 

The value Kf = 1 leaves the relations unchanged, whereas the value Kf = 0 indicates that the 
viscous terms are completely omitted. 

A 
0 

O 0  
l3 

V 

0 

n 
v 

1 11 1.2 1.3 1.4 

E 
Figure 6. Convergence test for K , .  Time I = 100s and time-step AI = 100s ( N  - I ) .  Choked flow at x = L 
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The idea behind the introduction of this K ,  is based on the following considerations: 

(a) As N + co, the last mesh becomes so small that the influence on the overall result, due to the 

(b) Even though l ( d p / ? ~ ) ~ = ~ l  may be quite large for a non-viscous flow, it is not infinite (see 

(c) From the numerical point of view very large numbers may be handled, infinite ones not. 

Figure 6 also shows the influence of the number of grid points N on the convergence. I f  N 
increases ( K ,  remaining constant), o r  if K ,  approaches 0 ( N  remaining constant), the value of the 
accuracy criterion E tends towards its ideal value cidea, = 1, whereas p x = r -  seems to approach a 
limiting value. The value K ,  = 0 was therefore selected for the calculations in sections 10 and 1 1. 

In order to ensure numerical stability the classical Courant-Friedrichs-Lewy (CFL) stability 
criterion,”.’* prescribing a maximum value for the time step At, has been used: 

&-value used, should vanish. 

Figure 1). 

where Ax is the mesh size along the axis of the pipeline. The same basic numerical case (mentioned 
above) was run with At = 0.25 s, considering that AtCFL was evaluated at 0.48 s. 

10. TEST CASES 

Case 1. Frictionless flow (4 f / D  = 0)  with gas initially at rest (ui = 0)  

This case is represented in Figure 1. Except for the slight rounding-off of the curves a t  the wave 
front, the computational result corresponds very well to the analytical solution, equations (I 0) 
(1 3). In particular, for the case considered (where N = 401), the propagation speed of the wave front 
is equal, within an error of 1 per cent, to the theoretical value ai = , / ( t i R r ) .  

This control is also satisfied in cases with friction ( ( 4 f / D )  # 0) and ui = 0. 
The frictionless flow case corresponds to the simple wave solution. For this classical case,’.’ ’-’ ’ 

the ‘characteristic lines’ in the wave diagram t(x) are straight and correspond to constant pressure 
lines. This is yet another check on the numerical procedure, the result of which was completely 
satisfactory. 

Case 2.  Detailed representation of the ‘kink’ 

All cases with friction show an unexpected flow distribution near the front of the expansion 
wave. In particular the p(x) curves present a sort of ‘kink’. Calculations with very high accuracy 
(because of a very high value of NIL) indicate that this feature is not due to a numerical effect, but 
corresponds to a real physical situation. A closer inspection of the corresponding flow section 
shows that the middle of the kink corresponds approximately to the location of,flow reuersal(u = 0, 
(?u/?x), > 0). In this region the frictional term is very small and the flow is nearly isentropic, but not 
homentropic. For a homentropic flow the relations (lo)-( 13) give roughly twice as steep values of 
(?p/?x), at the wave front. 

Figure 7 shows the formtion of the kink during the first 45 seconds after the break. As time 
passes the amplitude of the kink is reduced, due to frictional effects (see also Figure 2). 

According to Reference 19 this special behaviour is due to  the fact that the problem is singular in 
nature and can be dealt with analytically by using the ‘method of matched asymptotic expansions’. 
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Figure 7. Formation of the ‘kink’. Parameter: r = 0.5,. . . . 45 s. 11,  = - 10 m/s, 4 / / D  = 0.00837/m 

This mathematical method (a full description of which can be found in Reference 20) uses so- 
called inner and outer expansions, which need to be matched in the overlap domain. 

Some more descriptive details of this kink are given in section 1 1 -Case 4. 

11. DISCUSSION OF REALISTIC CASES 

Case 3. Shutting the valve at the low-pressure side 

As is well known from hydraulics,” such a manoeuvre would be followed by a pressure build-up 
upstream of the valve. Case 3 corresponds to the basic case of section 5, except for the valve being 
shut abruptly at t = 0, and we find (Figure 8) [p,=o(t)]max z 90 bar at t 2 600 s. 

The P(x) distribution for the higher time values is typical for what has been termed ‘late-time 
regime’ and investigated analytically in Reference 3 .  

Case 4.  Practical case corresponding to North Sea conditions 

The numerical input has been described in section 5. Figure 2 gives the pressure and velocity 
distributions. The former shows a point of maximum pressure which slowly moves towards the 
low-pressure side, as already mentioned in section 2.  The point of flow reversal is nearby, though 
not at exactly the same location. The left-hand side of the ‘kink’ referred to in section 10 represents 
the front ofthe expansion wave. I t  is interesting to note that even in the presence offriction i t  travels 
(from right to left) at the speed of sound with respect to the gas, which itself moves in the same 
direction (see also the corresponding comment in section 10-Case I). As the kink (which at first 
has a negative ap/ax value) moves faster than the pressure peak, the latter is left behind. While the 
distance separating the kink from the pressure peak increases, the kink tilts down to the other side: 
its ap/dx is now positive. During this latter phase its amplitude seems to be gradually smoothed by 
frictional effects. 
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Figure X. Pressure distribution after shutting the valve at  x = 0 and I = 0. Parameter: I = 0, 100,. . . .XOOs. 14, = - 10 111 s. 

4 f ,'D = 0.00837/m 

Figure 9 shows the stream density distribution 

n;l 
pu = - = f ( x ,  t) ,  A 

The critical speed of sound distribution of Figure 10 also gives (indirectly) the stagnation 
temperature distribution, as 

G I  
50.00 100.00 150.00 

31 0- 0 .00  

x /M ~ 1 0 - 3  
Figurc 9. Strcam density ( p u )  distribution of case 4. Parameter: I = 0. 100,. . . ,400s. I(, = - 10 m/s, 4f,'D = 0.00837,!m 
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0 0  

X /M ~ 1 0 - 3  
Figure 10. Critical speed of sound (a * )  distribution of case 4. Parameter: t =0,  100, . . . .  4005. u,  = - 10m/s, 4 / / D  

= 0.00837/m 

All values of a* (and T,) lie in a narrow band: 

The stagnation pressure distribution, 

looks very similar to the static pressure distribution. However, although (dp/i?x),=,< = - a, it can 
be shown analytically that for choking ( d p u / d x ) , = ,  has a finite value. 

Figure 1 1 gives the non-dimensionalized entropy variation, defined as 

m 8- 
0- 

0 
0 

0 I I I 1 1 1 
0.00 50.00 100 .00  150.00 

x /M ~ 1 0 - 3  
Figure 1 1 .  Non-dimensionalized entropy (s  - s , / R )  distribution of case 4. Parameter: t = 0, 100,. . . , 

4//D=0,008371m 
400 s. u, = ~ 10 mjs, 
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0 1 0 200  

t I s  
Figure 12. Mass-flow rate at s = L as a function of time 

As pointed out in the Introduction, knowledge of the massTflow rate M at the break point, ( I S  11 

finction of time, is of great practical interest to the offshore gas industry. The continuous line in 
Figure 12 shows this relationship for t = 100 to 300 s. The broken line in Figure 12 represents a pure 
exponential passing through the point A$(t = 100s) and having the same derivative at this point. 
The comparison of the two curves shows that the decay of A([) is ‘slower’ than exponential. 

I t  is not the purpose of this article to discuss the security measures which ought to be taken to 
prevent the hazards (mentioned in the Introduction) to which oil-rigs or ships might be exposed. 

12. CONCLUSIONS 

(a) In order to evaluate the safety and pollution problems due to the rupture of an offshore gas 
pipeline it is necessary to understand the unsteady fluid dynamics behaviour occurring 
inside the pipeline. The associated mathematical formulation is highly non-linear and no 
analytical solution for it is yet known. Nor can laboratory tests be used. The best approach 
therefore is one based on computational fluid dynamics. 

(b) This article describes results obtained with a Fortran program (PIPE I ) ,  based on the 
method of characteristics, with which the distribution of thermodynamic quantities such as 
p ( x ,  t), u(x, t ) ,  etc. can be calculated. The algorithms used are however limited to shock-free 
flows. 

(c) An accuracy criterion shows that high numerical accuracy may be obtained if the number of 
grid points is sufficiently large and if a special modified form of the boundary condition at the 
broken section is used. 

(d) The results confirm conclusions already established by Fannelop and Ryhming3 that 
frictional flows with large values of4fL/D(order ofmagnitude: 1000) behave very differently 
from flows without friction. In particular, the mass flow escaping through the broken section 
and the pressure there fall to much smaller values. 

(e) On the other hand, at some distance from the broken section (compare for example Figures 2 
and 1 at x = 0,9L), the pressure stays at high values much longer than in the case without 
friction. 
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(f)  As computing time is considerable for long pipelines and long physical times, i t  may be 
advantageous to use the PIPE 1 program only for the time phases preceding the 'late time 
regime', and evaluate the latter with the analytical solution developed in Reference 3. 

(g) The weakest aspect of the physical model used is the perfect gas assumption (section 5). 
Therefore, a real gas version of the computer program has been developed (PIPE 2)."." One 
of its results is that the mass flow of methane escaping from the pipeline is about 25 per cent 
larger than that obtained with PIPE 1. 
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NOMENCLATURE 

cross-section 
speed of sound, equation (7) 
critical speed of sound, equation (18) 
diameter of pipeline 
friction factor (Fanning factor), section 5 
convergence acceleration factor, section 9 
length of pipeline 
mass inside pipeline, section 9 
= Apu, mass-flow 
Mach number 
number of grid points 
pressure; exterior pressure 
= p/(pT) gas constant 
entropy/mass 
absolute temperature 
time 
velocity of gas 
axis along pipeline (orientated from the low-pressure end towards the high-pressure 
end) 
friction coefficient, equation (8) 
accuracy criterion, equation (1 6 )  
= c,/c,, ratio of specific heats 
dynamic viscosity 
density 
tangential stress at the wall 

initial value, sections 5 and 7 
( d . .  . /at), partial derivative 
total (or stagnation) state 



98 RENE FLATT 

1 Pr 
= K ,  with K I  = ---, 

U P  

+- 1 4 f  -= K 2  with K 2  = ---, 1 ut 
2 0  u u  

t i - 1  4f 1 pt 1 Pr 
2 D h-u p u p  

1 E - 5  
t i p  P 

-~ Ma2 - = K 3  with K 3 =  
i 

(. . .), 
do(. . .) 
d+( .  . .) 
d -(. . .) 

(8.. ./ax), partial derivative 
differential along pathline 0 
differential along + characteristic 
differential along - characteristic 

, (21) 

APPENDIX-PROOF OF THE SINGULARITY AT M a =  1 

For an adiabaticflow of a perfect gas through a constant area pipe the conservation laws can be 
formulated as follows: (see, for instance Reference 15, chapter 19). 

pt + up, + pu, = 0. Continuity equation 

Momentum equation 
pu2 4 j  

pu, + puu, + p x  = - - -. 
2 0  

Energy equation 
pu3 4 f 

(pr + UP.x)-a2(Pr + UP,)= (K - 2 0  

Dividing these relations by pu, pu2( = tipMa2) and pua2( = u p ) ,  respectively, we obtain after 
minor rearrangements 

P x  u, -+ -  
P U  

u, +- 1 PI ~- 
tiMa2 p U 

From the equation of state p = p/ (RT)  we obtain 

and from u = u M u  = ~ ( K R T )  M a  we obtain 

u,- 1 T, Ma,  +- 
u 2 T  Ma 
- - -- 

Elimination of p,/p and u,/u between (21)-(23) and setting p x / p  = 7c, T,/T= T and Mrr,/Ma = ,u, 
(2  1 ) becomes 

z - + . r + p =  
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This linear system ofequations can be solved for the three unknowns 7c, T and p. The results, written 
in terms of p,, T,, Mu, and u, are 

1 + KMU’ 

2(1 - MU’) 
+ 

(K1 - K2 + K 3 )  + K2 . 1 au 1 KMU’ Lf+ -= .[ 
8~ 2(1 -MU’) D 1 -MU’ 

I t  is evident that all these partial derivatives tend towards infinity, as Mu tends towards I ,  provided 
that 4 , f /D  # 0. This establishes the expected singularity. 

Remarks 

1. Some special cases of unsteady flows with 4 f / D  = 0 (homentropic flows with uniform initial 
conditions) would lead to K 1  = K z  = K 3  = 0. For these cases the above relations (25)-(28) 
would be indejnite ((8.. ./ax) = (O/O)) at Mu = 1 .  An analysis similar to the one which led to 
the equations (10)-(13) would show that, for Ma = 1, (8.. ./ax) = f ( ~ )  has a finite value. 

2. In the case of steady Jows K1 = K ,  = K 3  = 0 and the equations (25)-(28) degenerate to 
particular cases of the well-known relations given in textbooks, such as References 8 and 15, 
under the heading ‘generalized one-dimensional flows’. The multiplying factors of 4 , f / D  are 
usually called ‘influence coefficients’. 

3. Equation (28) shows that the often encountered simplifying assumption 

D U  au au au 
Dt at ax at 

- - - -++--- 

(see for instance Reference 21, chapter 15, p. 273) is valid only for M u  << 1. It would be totally 
incorrect at M u  2 I !  
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